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Kinetic Monte Carlo simulation of titin unfolding
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Recently, it has become possible to unfold a single protein molecule titin, by pulling it with an
atomic-force-microscope tip. In this paper, we propose and study a stochastic kinetic model of this
unfolding process. Our model assumes that each immunoglobulin domain of titin is held together by
six hydrogen bonds. The external force pulls on these bonds and lowers the energy barrier that
prevents the hydrogen bond from breaking; this increases the rate of bond breaking and decreases
the rate of bond healing. When all six bonds are broken, the domain unfolds. Since the experiment
controls the pulling rate, not the force, the latter is calculated from a wormlike chain model for the
protein. In the limit of high pulling rate, this kinetic model is solved by a novel simulation method.

In the limit of low pulling rate, we develop a quasiequilibrium rate theory, which is tested by
simulations. The results are in agreement with the experiments: the distribution of the unfolding
force and the dependence of the mean unfolding force on the pulling rate are similar to those
measured. The simulations also explain why the work of the force to break bonds is less than the
bond energy and why the breaking-force distribution varies from sample to sample. We suggest that
one can synthesize polymers that are well described by our model and that they may have unusual
mechanical properties. @001 American Institute of Physic§DOI: 10.1063/1.1369622

I. INTRODUCTION ment are not identical: the unfolding times and the force at
a\{vhich unfolding take place are stochastic variables; they

Many proteins and other large molecules make chemic : o . .
bonds with a variety of surfaces. An adsorbed proteinvary with each repetition of the experiment. The probability

touched by the tip of an atomic force microscdp&EM) will distribution qf thg unfolding force has been measutéuat
sometimes bind to the tip. If this happens, the molecule cafl the unfolding time was not. N _

be stretched by moving the surface away from the tip. Pulleq FOr the purpose of the present paper, titin consists of
by the receding molecule, the AFM cantileven which the ~ folded immunoglobulir(ig) domains located along a stritfg

tip is located bends(see Fig. 1. From this bending, one can (S€€ Fig. 1 The drop of the force in the saw-tooth graph
calculate the pulling forcéthe force constant of the cantile- t@kes place when one of the Ig domains unfolds. The in-
ver is known. Such experimen’t§” determine the elonga- crease of force, following its collapse, occurs because the
tion of the molecule as a function of the applied force, forunfolded domains are being stretched by the force.
various pulling rates. One makes thus, on one molecule, the ~This interpretation is supported by several observations.

kind of measurements used to determine the plasticity of he measured distance between peaksiisthe order of 25
macroscopic wires. to 28 nm, while the maximum length gained by unraveling

If the molecule being pulled is the protein tifi75%° an Iy domain is expected to be 31 AfAn additional argu-
the plot of the force versus molecular elongation looks likement in favor of this interpretation was provided by Rief,
the one shown in Fig. 2. If the load is removed the moleculeGautel, Oesterhelt, Fernandez, and Gawho performed
folds back; pulling again generates a new saw-tooth patterthis kind of experiment with recombinant titin molecules
that is very similar to the initial one. This process can be“engineered” to have either four or eight Ig units. In these
repeated hundreds of times. We will argue shortly that theexperiments, they never observed more than foureighy
sudden drop in the force corresponds to the unfolding of deeth in the saw-tooth pattern, although pulling and refolding
domain in the protein. There are many saw-teeth because thgere repeated many times. In some experiments, they saw
protein has many domains. We will call the maximum forceless than foufor less than eightteeth because, presumably,
in a tooth the unfolding force; the time when the drop is seerthe tip did not bind to the end of the molecule.
is called the unfolding time. The titin unfolding experiments revealed a number of
The saw-tooth graphs obtained by repeating the experintriguing facts that a model should explain. The magnitude
of the unfolding force and the work expended to induce un-
dpresent address: Department of Chemistry and Biochemistry, The UniveIf-OIding (since one measures the force and the displacement,
sity of Texas at Austin, Austin, Texas 78712. one can calculate the workhanges with the pulling rate. If
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FIG. 1. A schematic representation of the protein unfolding experiment.

the unfolding of the domain takes place by breaking weak

chemical bonds, one would naively expect that the work of

the pulling force should be equal to the energy of the bonds
being broken. The fact that the work depends on the pulling

rate, and is smaller than the energy of a hydrogen bond, is a
puzzle that requires an explanation.

In the experiment, the forcé at which the unfolding F
takes place increases with the pulling rateThe empirical
relationF =a+blogv (a andb are constanjdits the experi-
mental data. A model of the process must explain, or at least
reproduce this dependence. (b)

The unfolding forces of the Ig domains in titin, measured
by different groups, are differefit.° Specifically, the unfold-  FIG. 3. (a) The structure of the 1g27 domain. Six hydrogen bonds resist
ing forces measured by Riet al® are larger than those ob- S”dilg OLWXO B:tfan?S(ShOW” i”t tthe ”gfhtﬁf ?f}zcﬂg"':thdfesp?ﬂ to °ned _
served by Vianet al,t° for experiments using the same pull- izf’tmig(eﬁ schematic representation of the folded fg domain assumed in
ing rate. These experiments differ only in the number of
domains in the titin molecule. Riedt al. studied genetically

engineered titin with four or elght Ig domains, while Viani Figure 3&) shows the experimenta| structure of the Ig27
et al. were working with native titin, having substantially gomairt® and the location of the six hydrogen bonds that
more domains. It is surprising that the force required to unvesist sliding of ongs-strand with respect to another and are
fold a single Ig domain depends on the number of such dopelieved to be crucial to unfoldin§.Other hydrogen bonds
mains present in the molecule. A model of the process mU%re not shown. F|gure(3) was generated by the VMD pro-
explain this observation also. gram that was developed by the Theoretical Biophysics

Important insights regarding the unfolding mechanismGroup in the Beckman Institute for Advanced Science and
have been obtained from the molecular dynamics simulationfechnology at the University of Illinois at Urbana—
performed in Schulten’s grOL&Al'lSWhO studied the behav- Champajgriw A Comp|ete description of the hydrogen-
ior of an Ig domain pulled by an externally applied force. honding pattern of the domain can be found in Ref. 14. It is
They concluded that unfolding takes place if six hydrogenshown there that the other hydrogen bonds between various
bonds, holding the protein folded, are broken. The calculag-strands break rapidly once the bonds indicated in Fig. 3
tions also point out that two other hydrogen bonds brealgre proken.
prior to unfolding. Those are believéd® to have a minor It is often pointed out that the pulling rate in molecular
effect on unfolding and are neglected in the present workgynamics simulations is six to eight orders of magnitude
larger than the one achieved in the laboratory. It is likely that
this affects the unfolding process. However, it is improbable
that the conclusion that unfolding is caused by breaking hy-
drogen bonds is an artifact due to the large pulling rate. For
this reason, we include this feature in our kinetic model of
the unfolding process.

The simulations also provide information about the en-

FIG. 2. A typical dependence of the stretching force on the extension of th&Ji€s Contm”.ing the 'Unf0|din_g of the molecule under |O§ld.
protein titin. We are not using this information here for two reasons. First,

A
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we are not sure that the potential energy used in the simula- We find that the model reproduces all experimental ob-
tion has sufficient accuracy. Second, as pointed by Paci angkrvations and provides insights into the unfolding kinetics.
Karplus!® Schulten’s simulations use a large number of wa-Unfortunately, this does not mean that the mechanism pro-
ter molecules which form a “droplet” around the protein. posed here must be valid. Its validation can only come from
When the Ig domains unfold this droplet changes shape andetailed, reliable quantum mechanical calculations and from
this costs a certain amount of free energy. In the simulatioriurther experiments. It is however possible to synthesize lin-
this is part of the unfolding energy. In the experiments, theear polymers that have a few side groups that can bind to
protein is surrounded by bulk water and this effect is absenteach other. It is likely that when the polymer is left alone the
Before moving on, we point out that not all proteins side groups will accidentally come in contact and form
unfold because hydrogen bonds are broken. Paci andonds. If these bonds are weaker than those holding the
Karplug'® find that the plastic response of fibronectin type Ill chain together, the folded polymer will come apart when
domains is controlled by van der Waals interactions. pulled by an external force. The behavior of this unfolding
We also mention that molecular dynamics simulationswill be described by the model studied here. Such materials
have been performed to examine unfolding of other proteinswould have interesting mechanical properties.
Bryant, Pande, and Rokhsrfor example, studied unfold-
ing of a B-hairpin forming polypeptide. The requirement that Il. THE MODEL
the sim_ulation time should be short_forces one to perform thg, Bond breaking and recombination
simulation at temperatures or pulling forces that are much
higher than the ones used in experiment. The kinetic Monte In our model, we assume that Ig-like domains are at-
Carlo approach allows one to access longer time scales. fifched to(and connected Bysoft springs that represent the
the context of protein unfolding, it has so far been only ap-est of the titin molecule including the already unfolded do-
plied to a lattice moded? mains. A folded Ig domain is held in place =6 hydro-
In this paper we propose and examine a kinetic model offen bonds. For lack of more detailed information we assume

titin unfolding under the influence of an external force. Wethat all these bonds are identical. In reality, the force that
assume that the folded Ig domdiRig. 3(@)] can be sche- stretches each bond will depend on the angle it forms relative
matically represented as shown in Fig(b3 where the O the pulling force and the structure of the protein backbone.
polypeptide chain is held together by six hydrogen bondsThese angles are themselves dependent on the pulling force
The potential energy along the reaction coordinate for eacS the protein is deformed under the load. In our simplified
individual hydrogen bond is represented by a double wellmodel, we assume that each bond is subject to a force

The external force, pulling along the reaction coordinate, dis-  f=F/n, (1)

torts the double well potential and affects the barriers to ) ) )

bond breaking and reforming; the rate of bond breaking iZVhere F is the total pulling force andh is the number of

enhanced and that of bond forming is diminished. Thus pull2onds that have not been broken. The force per bond in-
ing enhances the net rate of bond breaking. When all th&reases every time a bond breaks. At present, we do not have

bonds are broken the domain unfolds. To simulate the ex€"°UdN micr'o.scopic information al?"“t the Ig domains to as-
perimental observations we need to examine the unfolding Oq_esslthe Val'd_'g of thotlasleEassuFrpptlons. \t/)Ve there_fore use the
many lg domains, taking place independently of each other!MP est possible model E¢L). However, by experimenting

Since we are interested in kinetic events taking place it)(\”th bead and spring models we found that the force on the

a single molecule, we cannot use the standard kinetic equ%—urVIVIng bonds grows substantially whenever one of the

tions, which deal with the evolution of the concentration of onds is broken. If detailed molecular simulations will pro-

an ensemble of molecules. A probabilistic treatment iSvide better information about the forces acting on each bond

needed which calculates the probability that a domain un‘-”lnd thg rate of each bond breaking, they can be easily in-
luded in the model.

folds at a given time, when the pulling force reaches a certailf . . .
value. The outcome of the calculation should be the probfh Thel.p(ét?ntlal.for each bond is a double well modified by
ability distribution of the unfolding times and that of the € applied force-
unfolding force. V(r)=D{1—exd —a,(r—ry)]}?
The model uses rate equations for the probability that a
bond is broken or is in place. In principle one could simulate +Do{1-exag(r —ra) ]}~ fr. )
unfolding by solving these differential equations and usingHerer is the “reaction coordinate” along which the bond
the resulting probabilities in a Monte Carlo program thatbreaks,D;=0.35eV,D,=0.19¢eV,a;=a,=1.5bohr?, r;
makes or breaks bonds. This procedure would require ar0, r,=4 bohr. The termf r describes the effect of the
excessive amount of computer time because the time stegiretching forcef. This potential is shown in Fig. 4, in the
used in solving the differential equations is at least eightabsence(solid line) and the presencé&ashed ling of the
orders of magnitude smaller than the unfolding time. For thisorce. The right well corresponds to a broken hydrogen bond,
reason we had to develop new simulation methods that arend the left well to an intact bond. As the fragments pro-
described in Sec. lll. Even though these methods are vergiuced by breaking a bond are held close to one another by
efficient, they still cannot cope with the case when the pull-the remaining bonds, there is a possibility that a broken bond
ing rate is very low. For this situation we develop a quasi-reforms. This event is represented here by a transition from
equilibrium approximation, which is described in Sec. V. the right well to the left well. At zero force, the state in
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0.9 breaking of the Ilg domains we need to know the time depen-
- 0.8 dence ofF(t). In the experiment this is being measured. In
© 0.4 ' our simulation we follow Rieet al®?*and use the wormlike
C e E;eiki,“gxp(_ﬂ A6) chain modef?~* which gives the forceg(x,) needed for
> . — stretching the chain a lengty,:
ol.4 9(xp) = (KgT/P)[0.251 X, /L) "2~ 0.25+x,/L]. (5)
0\3
' , Herep is the persistence length, chosen t8'tie=4 A. The
r 1 2. 3 4r+ 5 r, bohr polymer’s length id =58 nm(Ref. 21) when all Iy domains
are folded. In our model, this is incremented ML
f(‘:C:“;:ig;g‘(’é‘ AH) =28 nm every time one of the domains unfolds. We empha-

size that the purpose of our model is to generate the correct
FIG. 4. The potential for a single hydrogen bdifty. (2)] in the absence of  breaking time and breaking force distribution not the raising
the force(solid line) and in the presence of a stretching fotdashed ling part of the saw-tooth pattern which is represented by(!E)q.
It is assumed in Eq2) that the component of the stretching force that acts W Id h d a fit t t,h df displ t
along the hydrogen bond is the samef.as e COL% ave used a Tt to the mea;ure _OI’CG- Isplacemen

curve, instead of Eq(5). However, since Rieét al. found

that Eq.(5), with the parameters indicated above, provides a

which the bond is broken has a higher energy than th&ood fit, we decided to use this expression. It is not clear that
bonded state. Stretching the bond lowers the energy barriéfe agreement between E@) and measurements is physi-
for bond breaking and increases the stability of the brokencally meaningful. The experiments stretch the whole mol-
bond state. As the force is increased the broken-bond staf€ule, consisting of folded domains and the chains connect-
will eventually become energetically more favorable and thdnd them(which includes the unfolded domajn©ne could
energy barrier preventing bond breaking will eventually dis-Imagine that the folded domains are rigid and that the chains
appear. This does not mean that the bond breaks when tig@Nnecting them behave like wormlike chains. There is how-
external force eliminates the barrier. Thermal fluctuationseVer no hard evidence that this interpretation is correct. Per-
can cause bond rupture before this situation is reached. TH&PS & more realistic representation of the force is provided
effect of these fluctuations is important and is included in thedy @ recent model proposed by Erick8omhich accounts
stochastic kinetic model developed here. for the fact that different parts of the molecule have different
The rate constant for the bond breaking, i.e., a transitior¢lastic properties. However, we have not studied this model
from left to right in Fig. 4, is given by the Arrhenius expres- here. We feel that since the present model fits the data well,

sion: not much would be gained by introducing features with more
parameters, unless new experimental details become avail-
kp(f)=vexd —AG(f)/kgT]. 3 apble.
The recombination rat&, is related tok, via detailed bal- We encounter here a slight complication. The experi-
ance ment does not measure the amoxg(it) by which the poly-
mer is stretched at time This has to be calculated from the
ki (f)=k,exgd AH(f )/kgT], (4 equation

where AG(f)=V(r*)—-V(r_), and AH(f)=V(r,)
—V(r_) (see Fig. 4 Herer_ andr , are, respectively, the
coordinates of the left and right minima, antl is the coor-
dinate of the maximum oWN(r). In our simulations we
choose the value=10%s"? for the pre-exponential in Eq.
(3). This is a typical value for unimolecular reactions.

A single Ig domain unfolds when all N bonds are bro- X(t)=F(t)/k;, (7)
ken. At zero force, this is a very unlikely process because
breaking a bond is energetically unfavorable and any brokeiherek.=0.06 N/m is the cantilever force constant. Com-
bond will be likely to recombine before the othigr-1 links ~ bining (6) and (7) we can expresg, as a function ofF(t).
get a chance to break. This is why the spontaneous unfoldintpserting this expression in E¢p) gives an implicit equation
of a domain does not occur on the experimental time scalér the force:
despte b o ki 0 s s s oz et Fk)

—0.25+ (vt—F(t)/k.)/L]. (8)

Xp=vt—Xc. (6)

Herev is the velocity of the surfacénoving away from the
cantilevej andx, is the displacement of the cantilever. The
latter can be calculated from

B. The time dependence of the force  £(1) This expression is used to calculate the force per dé&ud

Because the molecule is stretched by moving the surfl)], which is then used in Eq2) to calculate the barriers to
face, with uniform speed, away from the cantile{see Fig. bond breaking and bond forming. These in turn go in Egs.
1), the force per bond=F(t)/n(t) is time dependent. Here (3) and(4) to give the rate constants for bond breaking and
n(t) is the number of bonds in the domain at titrendF(t) bond forming. These rate constants depend on time through
is the total stretching force at the same time. To simulate th&(t) and the numben(t) of bonds in place at timé We
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have therefore all the information needed to simulate theertain probability that a bond reforms andgoes inton
stochastic single molecule kinetics for the unfolding causedt 1, and a given probability that the bond breaks argbes

by surface displacement.

IIl. MONTE CARLO SIMULATION OF UNFOLDING

A. A bootstrapping approach to simulate unfolding
of many Ig domains

to n—1. Therefore, the unfolding kinetics for a single mol-
ecule can be described as a random walk of the variable
n(t). In what follows we describe the properties of this ran-
dom walk and arrive at an efficient Monte Carlo algorithm
for simulating it.

Suppose that at timethe Ig domain containa bonds.

A brute-force simulation of a protein with many domains The probability that one bond is broken betweand t

would simulate, in parallel, the state of all the bonds in thet dt

is  pp(t)dt=nky,[F(t)/n]dt. In this formula,

protein. However, there is every reason to believe that th&l[F(t)/n] is the rate constant for bond breaking; the nota-
domains evolve independently of each other. Therefore, ifion indicates that this “constant” depends on time through
we know the statistical properties of one domain unfolding,the force per bond(t)/n(t). The probability that one of the

we could use them to simulate the unfoldingddfdomains.
Let S(0,t) be the survival probability for one domain, that is,

broken bonds will reform i, (t)dt=(N—n)k,[F(t)/n]dt.
If at timet the domain haa bonds then at the time+ dt the

the probability that the domain has not unfolded by the timglumber of bonds will be— 1 [with the probabilityp,,(t)dt],
t, in an experiment in which pulling started at time 0. Then+ 1 [with the probabilityp, (t)dt], or n [with the probabil-

survival probability forM domains o (0t) (that is, the
probability than none of them has unfolded by the tihes

a product of the survival probabilities for each domain, i.e.,

om(0)={S(0t)}".

The probability that one of the domains will unfold at a time
betweent andt+dt is given by

() dt=—(doy(0t)/dt)dt
—M{S(0t)}M~1(dS(0t)/dt)dt. (10

The quantitymy(t) is the unfolding time distribution for a
system ofM Ig domains. Givenry,(0t), we can generate a
timet; at which one of the domains unfofdsy solving the
equation:

ou(0ty)=¢. (11
Here¢ is a uniform random number between 0 and 1. It doe

are equivalent. At the time¢; immediately after unfolding

ity 1—py(t)dt—p.(t)dt].

These three probabilities are sufficient for generating the
random walk of the variable. The conventional procedure
would be to start at timé=0 with the domain in the state
We will discuss later how the initial state is chosen. We
increase the time tdt and calculate the rate constaktsand
k, at that time(using the value of the force at that tine
Then we imagine laying down the three probabilities
pp(t)dt, p,(t)dt, and 1-p,(t)dt—p,(t)dt as segments on
a line of length one. Then we draw a uniform random num-
ber ¢ between zero and one. §ffalls on the segmerg,(t)dt
we increasa(t) by one; if it lands on the segmept(t)dt
we decreasen(t) by one; if £ falls on the segment 1
—pp(t)dt—p,(t)dt we leaven(t) unchanged. Ifn is not
changed we increase the time ¥ calculate the rate con-
stantsk, andky, at time 2dt, and repeat the procedure.rf
has been changed we change the force per bérd=(n)

. . . Sind recalculat&, andky, for the new force. After this we use
not matter which of the domains unfolds, since all of them

the three probabilities to generate another eveicreased
or n decreased, on unchanged. This is repeated umti=0

takes place, the length of the protein is increased and b%r the first time

comesL +AL, which means that the force) drops. We

now haveM —1 domains and so we compute the survival

probability oy _4(ty,t) ={S(t;,t,)}M 1 that no unfolding

event takes place betweépandt,. We then generate the
unfolding timet, according to this probability and so on.
This procedure is repeated until Ml domains are unfolded.

It is clear from this discussion that all we need to know to
simulate the unfolding of many Ig domains is the probability

S(t,,t,) for one domain to survive by the tintg, if pulling
started at time; .

B. Unfolding a single Ig domain by a Monte Carlo
method

For the purpose of the present simulations the state of
domain at timet is specified by the number of bondgt)

This “conventional” algorithm forces us to use small
time steps and is inefficient. The inefficiency appears be-
cause for a large number of time stepwill not change and
we are wasting computer time testing whether a change
should be performed or not. It would be much better if we
could directly generate the time whenchanges, together
with an indication of the type of change. This can be done as
follows. Suppose that at time=0 we start the simulation
with n bonds. We refer to either bond breaking or recombi-
nation as an event. The tintg when the first event occurs

can be determinéfi by solving the equation
A(Ot1)=¢, (12)

where ¢ is a uniform random number between 0 and 1, and
A(0;t) is the survival probability of the statg i.e., the prob-

that are intact at that time. Since the total number of bonds imbility that no event has occurred between 0 and his

a domain isN, the number of broken bonds ié—n. The
kinetics of unfolding is described by the functiort); un-
folding occurs at the first time at which(t)=0. Since we

quantity should not be confused wi®(0t), the survival
probability of the domain.
To calculateA(0,t), we note that the probability that the

are dealing with a single molecule, the kinetic equations profirst event(after the simulation has starbedill happen be-

vide us with probabilities: for a given value ofthere is a

tweent andt+dt is equal to the probabilitA(0,t) that no
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event took place beforg times the probability that an event (4) Generate a new random numb&rnd solveA(t,,t,)
happens betweenanddt. The latter is equal to = ¢ to find the timet, when the next event takes place.

A(ty,ty) is gi by Eq.(13b) with the int tion f
py(H)dt+p,(t)dt=nk[ F(t)/n]dt (ty,ty) is given by Eq.(13b) wi e integration from

t; tot,.
+(N=n)k,[F(t)/n]dt. . . .
Repeat step§?), etc. This iteration goes on until=0 (the
The survival probability therefore satisfies the equation domain has unfolded

dA(01) = —A(O){nk,[F(t)/n]dt

F(N=n)k[F(O)/n]rdt. (133 We need now to explain how we chose the initial state of
This gives the domain. Att=0, when no force acts on the protein, we
assume that the Ig domain is in thermal equilibrium. The
A(O,t)zexp( _ ftdt’[nkb(F(t’)/n) probability p,, of havingn bonds at=0 is then determined
0 by using the detailed balance equations:

C. The initial condition

Prnky(0)=p,_1(N—=n+1)k,(0), n=2,..N. (14

The left-hand side of Eq(14) is the probability, per unit
time, of breaking of one of the existing bonds, thereby

At first glance, using Eq(13b) to compute“the tlme. of Jyeducingn by 1. The right-hand side is the probability of
the next event has no advantage over the ‘“conventional . e
. " : adding one more bond to the existing-1 bonds. Now we
algorithm. The transition rates are time dependent and the

. . ; : . assume that the time it takes the domain to equilibrate is
integral in Eq.(13b) is evaluated numerically. When the in- o

. . . S : much shorter than the time it takes to unfold. Therefore we
tegral is calculated the time intervéD,) is divided into

sl steps. Doty h e sep i he coruen- £°0 161t Sl Proabily of kg o et e
tional algorithm and byh, the time step required by the P q:

. . . ) . +pot+...+py=1. i i -
niaraton e i £33 The conventonalagortim P2LF% L Eaonsia tgstir win e o
is accurate ith; satisfies the inequalitiels,h; <1 andk, h; g

<1. The integration in Eq13b) is accurate if the time step ﬁ;??ﬁ::g'eersg? bg;]g;(:hwli\fﬁ r:;i C?orlk?ag}llril we select the ini-
h, is small compared to the time during which the rate con- " P ¥Pn-
stants change significantly. That s, is set by the time scale
on which the time-dependent forégt) changes, rather than
the time scale of bond breaking/recombination. Roughly  According to the arguments given in Sec. Il A, the time
speakingh, is much smaller than the unfolding time for the t, when the first domain unfolds is a solution to E¢®.and
entire Ig domain and much larger than ribkp, 1k},  (11). This means that we need the single-domain survival
which is the lifetime of a state of the domain. For the probability S(0t). The straightforward procedure for calcu-
parameters adopted here, fftiky, 1k} is on the order of |ating S(0,t) would be to simulate unfolding of a single do-
microseconds or shorter, while the time scale of unfolding inmain in a large number of Monte Carlo runs and make a
a typical experiment ranges from milliseconds to secondshistogram of the unfolding timefg;}. The resulting data will
Thereforeh, is at least three orders of magnitude larger tharpe noisy so that the histogram of the unfolding times would
h,. We find that it takes more than 2Bond breaking, bond have to be fitted by some smooth function to obt&{,t).
forming events before the Iy domain unfolds; the time itSuch a procedure would be inconvenient and cumbersome. It
takes to break one bond is often so much shorter than th@ould be desirable to pick the unfolding times of the domain
unfolding time, that one can get away with only one timefrom the array{t;}, with probabilities satisfying Eq(11),

step in evaluating Eq(13b) [i.e., one can tak&(t) to be a  without having to fit the distribution oft;} by any smooth

+(N—n)kr(F(t’)/n)]}. (13b)

D. The simulation of many domains revisited

constant function. The probability distribution dft;} is, by definition,
We summarize now the more efficient algorithm usedp,(t)=—dS(0t)/dt. However, we want to pick times from
here. the array{t;} but in such a way that they have the distribu-

(1) Generate a random numbgrand solve Eq(12), with tion given by Eq.(10). This means that some elements of the

A(0}) given by Eq.(13b). This gives the time, when array{t;} would be more likely to be selected and some less.
an event takes place Here is how this can be done. Denote i) the number of

(2) Generate a new uniform random number 0<1. If ¢ elements in the Iis{ti} that are larger tham. If N, is the
<nky(ty)/{nky(ty) + (N—n)k (t;)} then remove one number of elements in the lit;}, we have
bond; otherwise increment by one. Thus, we decide S(0t)~v(t)/IN;. (15
whether the event at; is a bond breaking or a bond
formation, with probabilities proportional to(t;)k,(t1)
and N—n(t,))k(t,), respectively.

When N; is very large this equation gives a very good ap-
proximation to the survival probabilit$(0,t) of a domain.

(3) Sincen has changed 4, recalculate the force per bond, E ;I’lhlt)a t{/rcﬁevr\]/heg asdeog];ilnaum%ldbsezsgqgg calculated from
and the rate constantsk,[F(t;)/n(t;)] and 9 ' weu ‘ !

kp[ F(ty)/n(ty)]. v(t)/Ny= &M, (16)
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FIG. 5. The number of bonds in the domain as a function of time generated 0.03
in one of the Monte Carlo runs for the last few microseconds before the E 0.025
domain unfolds. The pulling rate is Am/s. a3
© 0.02
0
S 0.015
o
whereé is a uniform random number between zero and one 0.01
and M is the number of Ig domains in the protein. This 0.005
equation is very easy to solve. If we sort the arfay in sgmm
order of decreasing times, then the time satisfying () is ®) 50 100 150 200
theN,(£)*™-th element in the sorted list. This gives the time force, pN

t when the first dom_am unfolds. . FIG. 6. The unfoldinga) time and(b) force distribution for a pulling rate of
To generate the timg, when the second domain unfolds , =1 ,nys.

we increase the contour lengthin Eq. (8) by AL=28 nm,
the length of the unfolded segméntwe then proceed to
generate a list of unfolding events for a single domain usin
the new force-extension curve, E®), and generate a new

unfolding time as described above. This is repeated until al Figure 8b) shows the histogram of the unfolding force,

domains unfold. LS . 2 o
We have described above an efficient procedure for per\fvhICh Is the unfolding force distributiope(F). It is inter-

forming Monte Carlo simulations of the kinetics of unfold- esting to note that the unfolding force can vary in a relatlyely
) . . : broad range, from 140 pN to 220 pN, while the unfolding
ing. Unfortunately, in spite of all the improvements made

) . - .~ ~time distributionp,(t) in Fig. 6(@) has a narrow maximum at
here the method is not sufficiently efficient to perform S|mu-E:54 ms with a width of about 2 ms. Since the force is a

Iayons n the.case when the pulling rate IS very SlOW'.TO (_jga unction of time[through the Eq(8)] the two distributions
with this regime we develop an approximate quasiequilib-

rium theory, which is accurate at low pulling rates. This isare related through
described in Sec. V. Pr(F)=p(D)/[F'(1)]. 17

It so happens that the breaking time in these calculations is
such that for a small change in time, E8) gives a large
change in the force. This means that small fluctuations
In Fig. 5, we show the time evolution of the number of around the mean value of breaking time lead to large fluc-
bondsn(t) in a single domain, for the last few microsecondstuations in the breaking force around its mean value. This is
before the domain unfolds. We note here an important effecthe reason why the distributigo:(F) is broader tham,(t).
which is used in developing the quasiequilibrium theory of  Figure 7 shows the dependence of the mean unfolding
force induced unfoldingSec. V). In this particular run the force on the pulling rate. The filled circles are the data of
number of bonds fluctuates but never goes below four. ARief et al® and the empty squares are the results of Viani
soon a1 becomes less than four, the domain unfolds almoset al1° Both experiments were performed with titin. Viani
instantaneously. We have observed this in all simulationset al. worked with a native titin while Rieét al. used a ge-
when the number of bonds drops below a critical number thaetically engineered titin molecule that contained a small
folded domain is no longer stable and unravels very rapidlynumber (4 or 8 of Ilg domains. We will assume in what
We will use this feature to develop a quasiequilibrium modelfollows that the properties of a single domain, and therefore
in Sec. V. the domain survival probability5(0t), were the same in
By repeating such a simulation 5000 times and recordindoth experiments. Therefore, the difference in the distribu-
the time at which the last bond breaks we obtain a histogrartions of the unfolding force in the two experiments must be
that gives us the probability distribution of the domain un-due to the difference in the number of domains. To verify
folding time, p,(t). The latter is related to the domain sur- this conclusion we have performed simulations for a mol-

Yival probability, S(0t), via pi(t)=-—dS0;t)/dt. In Fig.
?(a) we plotp,(t) for a pulling rate of 1um/s.

IV. SIMULATION RESULTS
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4 1g domains domain becomes very long. During this long period the
bonds in the system break and reform many times. We find
that when the pulling rate is less than Quin/s, the computer

single domain . time needed by the Monte Carlo simulation for generating so
many bond breaking or forming events becomes prohibitive.
Unfortunately, these are the pulling rates used currently by

e o
140 expe_riments. Here we propose a quasiequilibrium theory that
- m provides an “analytical” solution for the case when the pull-

=]
-7.5 -7 -6.5 -§ -5.5 4\ ing rate is low.

unfolding force, pN
=
[+
o

5
logv Besides providing a very efficient algorithm the quasi-
50 Ig domains equilibrium theory is conceptually important. Rief al*
have shown that their experimental data could be fitted by a
FIG. 7. Mean unfoldir_lg f_orce as a_function of the pulling rate f(_)r differenté)henomenobgicm, two-well model, in which force-induced
values of the Ig domains in the chain. Also shown are the experimental data. . . . . .
Filled circles: Ref. 6. Empty squares: Ref. 10. unfolding is characterlzed.by a time-dependent rate. Thl§
suggests that, for the pulling forces used by these experi-
ments, our model should reduce to an effective two-well
ecule that containd1 =1, 4, and 50 Ig domains. Figure 8 model. The quasiequilibrium theory shows that this reduc-
shows a typical force-extension curve generated in the coursgon does take place and allows us to interpret the effective
of a simulation of the unfolding of four Ig domains. This is rate constant in the two-well model in terms of the bond
very similar to the experimentally observed dependencesyreaking and bond forming rates used in the present work.
For low pulling rates ¢ <0.1um/s), the Monte Carlo simu- To explain the quasiequilibrium model we start by men-
lation becomes slow so we used the quasiequilibrium unfoldtioning three properties of the random walk of the variable
ing theory of Sec. V instead. The results are also plotted im(t), established by our simulations.
Fig. 7. The exact number of Ig domains in the experiments of (1) The random walk of the variable(t) “forgets” the
Viani et al’®is not known(and it may vary from sample to initial number of bondsp(0), on atime scale much shorter
samplg because the AFM tip does not necessarily bind tothan the unfolding time. The survival probabili§(0yt) is
the end of the titin molecule. In our simulations we choseindependent of the initial value of, as long as we do not
M=50. Since the dependence of the resultshris not  start withn=1. If we start withn=1, the simulation gener-
strong, the uncertainty iM does not affect the conclusions ates a large spike ip(t), att close to 0, because there is a
that follow. It is seen from Fig. 7 that the effect of the num- nonzero probability that the domain unfolds immediately af-
ber of domaindvl on the mean unfolding force is consistent ter starting the simulation, by breaking its last bond.
with the trend that is seen experimentally. While the agree-  (2) The unfolding of a domairii.e., the breaking of the
ment between simulation and experiments is not perfect, theist bond is a rare event; a huge number of changes(ir)
trend is clearly displayed. take place before the domain unfolds.

It is easy to understand how the number of domains  (3) By examining the last few microseconds prior to the
affects the mean unfolding force. Because the domains unime when the domain unfoldsuch as in Fig. bwe find that
fold independently of each other, the first unfolding in athere is a critical numben” of bonds with the following
molecule with many domains will take place earlier than in aproperty: as soon as(t)<n”, the domain will unfold prac-
molecule with few domains. If the unfolding time is earlier, tically instantaneously. An example of such a rapid unfold-

the unfolding force given by Eq8) will be smaller. ing is shown in Fig. 5, whera” is equal to 4. Such sponta-
neous unfolding is not hard to understand qualitatively: each

V. QUASIEQUILIBRIUM THEORY time one of then bonds is broken, the force per bond in-

A. General theory creases fronF/n to F/(n—1). At some point this has an

) ) ) ) “autocatalytic” effect and the bonds are broken “explo-
If the pulling rate is low, it takes a long time to develop sively.”
a sizeable pulling force and the time required to unfold a Properties(1) and (2) suggest that the dynamics of the
domain can be described in terms of a probabifityt) to
200 haven bonds at timet. Probabilitiesp,(t) are time depen-
dent because the transition rates fronto n=1 change in
150 time. If the force were time independemt,(t) would be
constant and equal to the equilibrium probability that is
100 obtained by solving Eq.14). If the pulling rate is small, the
force changes slowly in time and we can assumephé is
50 in equilibrium with the value of the force at tirte For the
calculation of rate, we can use equilibrium populations,
20 40 60 80 100 120 which we calculate from the detailed balance

polymer extension, nm
PNk, [F()/n(t)]=pp-1()(N=n+ 1)k [F(t)/(n=1)],
FIG. 8. A typical force-extension curve generated kb= 4 in one of the

Monte Carlo runs. n=2,..N (18

force, pN
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together with the normalization condition. a) 4000
Property(3) suggests that, in the spirit of transition state >
theory, the unfolding rate is % 3000
ket ) =P kol F(D/N*(0) I 19 £ 2000
To unfold, n(t) needs to reach” (the probability of having e
n* bonds isp#r)) and break one of the” bonds(the rate for 1000
this is the rate constamg[ F(t)/n*(t)] times the number of
bonds. 0.009 0.01 0.011 0.012
To complete the theory we must provide a recipe for time, s
calculatingn®. If we knew it, the effective rate would be
given by Eq.(19). If we substituten®=1,2,...,6 into Eq(19) b)
we can calculate six effective rate constaktg, one for
each value ofn*. We can use now the fact that the rate
constant calculated by assuming than# n*(t) the domain > 0.025
unfolds, is an upper bound for the exact rate constant. This = 0.02
means that, like in the variational transition state theory, the 8 0.015
effective rate constant is the smallest value among the six g_ 0.01
rate constants: 0.005
Kert(t) =ming[ p(t) kel F(8)/n]n]. (20 BT TR T TR T
Given the effective rat&.x(t) it is easy to determine the force, pN
probability distribution of the unfolding time: the survival
probability of the domain is given by FIG. 9. The unfgldi_nga) time ant_j(b) forc_e distribution for_g p_ulling rate of
5 um/s. The solid lines are obtained using the quasiequilibrium thiggng.
t (20) and(22)].
S(O,t)=ex;{— fodt’ Keri(t")|. (21)
G o n* is likely to be equal to 6. This means that all the hydrogen
The probability distribution of the unfolding time is bonds will break simultaneously, which is what they observe
t in the simulations. Our model also implies that this would
pi(t)= —dS(O,t)/dt=keﬁ(t)exp{— fodt, keﬁ(t/)}- not be the case had the pulling rate been smaller.
(22)

C. The case of a low pulling rate  (effective two-well
We plot this distributior{solid line), along with the results of model )

a full Monte Carlo simulation, in Fig.(®), for a pulling rate

of v=5 um/s. In Fig. 9b), the unfolding force distribution o .
. . bonds isn"=1. This means that all bonds have to be broken,
predicted by Eqs(20), (22), and (17) is compared to that in a stepwise fashion and the ‘“catastrophic” breaking of

generated by a full Monte Carlo simulation. The agreemenl[ . . . .
between the quasiequilibrium theory and the simulations ii evc:cr)%lat;cl)ndvjhlgtah\;eryeir;o;tttl[r;:: Ivc\)l \'/IJ n(:jt”ibne Ort;?;vﬁgé;—hgs
excellent. We have tested the quasiequilibrium theory for P y bp buliing y

) . Reif et al?! If this is the case, the unfolding rate is the prob-
ggg‘g%gr]?;smlgntthii Z’}In g:sjégm/szUBO.l,u m/s and found ability of having one bond left multiplied by the rate of

breaking it:

Keri() = P1(t) kp(F(1)). (23
If we solve Eq.(18) and use Egs(3) and (4), we get

When the force is low enough the critical number of

B. The critical number of bonds  n* as a function
of force F

The critical number of bonds?, for which the minimum
in Eqg. (20) is achieved, is also a function of the forEét)
(and therefore a function of timeln Fig. 10 we plon* as a
function of the forcd-. These values have been calculated by
the procedure described above for calculating the effective
rate constant in the quasiequilibrium theory. They are valid
only if the pulling rate is small enough for the quasiequilib-
rium theory to be valid. Our simulations indicate however
that the trend is general: as the force increasebecomes
larger.

This sheds some light on the results of Lu and
Schulten®® Since they use extremely large pulling rates, the

pulling force becomes_ large before the p.rotein' has a 'ChanOﬁG. 10. The critical number of bonds in the domain as a function of the
to unfold. Our calculations suggests that in their experimentapplied force.

BN w kU oo

100 200 300 400 500 600

Critical number of bonds nt

force, pN
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P1(t)=Npn(H[Kkp(F(1)/N)/K (F(t))] these events occur. The domain unfolds wimét) =0 for
the first time. By repeating such a simulation many times we
X exgd — BAH(F(t)/(N—1))] generate a list of unfolding times. This list is used to perform
X exy — BAH(F(1)/(N—2))] a simulation of the unfolding of many domains that does not
require any further calculations except for sorting the list.
—exd — BAH(F(1)/2)], (24) This procedure allows us to simulate unfolding under
where 8=1/kgT. Substituting Eq.(24) into Eq. (23) and stress when the pulling rate is high. Unfortunately, it requires
using Eq.(3), we get too much computer time when the pulling rate is low. In this
regime, we had to develop a new method. We do this by
Kef(t) =Npn(t) v exp(— BE4()) (29 assuming that during a slow pull, the variabi¢t) is in
with equilibrium with the force~(t)/n(t). This allows us to cal-

culate the probabilitiep,(t) that a domain has bonds at
Ea()=AG(F(U)/N)+AH(F(/(N=1))+-- time t. In simulations we have observed the existence of a
+AH(F(1)). (26)  critical valuen” of n(t): if n(t) drops below this value, the
domain unfolds very rapidly. The rate of unfolding is the rate
for n(t) to drop below the critical value. The critical value
plays a role similar to the transition state in the transition
Py =11+ an+ ayan_1+ anyan_1 - as), (273 state theory. We determine it by using a variational method
similar to the variational transition state theory. This
quasiequlibrium model has been validated by simulations.
an=kp[F(t)/nIn/((N=n+1) The model describes well the experimental observations
even though we did not try to vary its parameters to fit the
XkF(D)/(n=1)]). (279 data. Here is a summary of the more important results. The
If the breaking rate is much smaller than the recombinatiordistribution of the force at which the domains unfold re-
rate, theno,<<1 andpy(t) ~ 1. This is the case in our model sembles that obtained experimentally. The distribution of the
when the forceF is low enough. In this casgE,(t) can be unfolding times generated by simulations is very narrow, in
interpreted as a time-dependent effective activation energyaccord with the experimental observations. Because we use
Equation (25 has the appearance of the rate of sur-the wormlike chain model to connect the extension of the
mounting a single time-dependent barriey(t) with an at-  polymer to the force acting on it, we can connect the width
tempt frequency on the order &fv. The real mechanism, of the unfolding time distribution to that of the distribution
however, consists of successive breakindNdbonds. If the  of the unfolding force. The latter happens to be broad be-
experiments are performed at low pulling rates, it is not poscause the mean breaking time happens to be such that
sible to use them to distinguish between a two-well and gF’(t)| is very large; small fluctuations in time lead to large
many-bonds mechanism. Evans and Ritehi® proposed fluctuations in force.
and studied a phenomenological model, in which unfolding  The dependence of the mean unfolding fofiegon pull-
involves surmounting a single energy barrier. Assuming &ng ratev is similar to that seen in experiment, which is close
linear dependence of the barrier on the force, they obtained @ the form(F)=a+bInuv.
linear dependence of the unfolding force on the pulling rate, The model explains why the work of the force is less
similar to the one in Fig. 7. It is seen from our discussion thathan the energy required to break the hydrogen bonds. Ex-
in the limit of low pulling rates our model gives the same cept for the case of an extremely high pulling rate, the bonds
result as that of Refs. 27 and 28, if one assumes that thgre always broken by thermal fluctuations that move the sys-
barrier in the Evans—Ritchie model depends on the force in g&m over the barrier. By lowering the barrier, the external
nontrivial manner, as given by E(R6). force makes these fluctuations more efficient. The difference
between the energy needed to break the bond and the work
of the force is taken from the medium.
The simulations and the quasiequilibrium theory led us
We have proposed a model for titin unfolding when it is to the concept of critical number of bondé. This depends
pulled with a time-dependent force. We have assumed thain the pulling force, and its value is 6 at the largest pulling
each Ig domain is held folded by six hydrogen bonds, agorce and 1 at the smallest one. This means that, when the
suggested by molecular dynamics simulatibhhe exter-  pulling rate is very high, if one bond is broken the others
nal force increases the rate of breaking these bonds. THellow in very rapid succession. This has been observed in
evolution of the probability that a bond is in place is de-molecular dynamics simulatiori3,which are forced to use
scribed by the equations of phenomenological kinetics, wittan extremely high pulling rate.
time-dependent rate constants. The quasiequilibrium theory allows us to show that the
The state of a domain under stress is described by thenfolding of a domain can be represented by an effective
variablen(t), the number of hydrogen bonds in the domaintwo-well system. Our theory gives an equation for the effec-
at timet. This quantity undergoes a random walk in which tive rate constant as a function of the rate constant of the
bond breaking decreasedgt) by 1 and bond forming in- elementary processes in our model.
creasesi(t) by 1. Our simulation generates the times when  Finally, we note that the success of the model does not

The probabilitypy(t) can be obtained by solving E¢L8),
and it is

where

VI. DISCUSSION
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